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We present a mixed integer programming (MIP) model to solve the problems of (i) selecting an airport’s optimal sequence
of runway configurations and (ii) determining the optimal balance of arrivals and departures to be served at any moment.
These problems, the runway configuration management (RCM) problem and the arrival/departure runway balancing (ADRB)
problem, respectively, are of critical importance in minimizing the delay of both in-flight and on-the-ground aircraft along
with their associated costs. We show that under mild assumptions on the time required to change between configurations,
large realistic problem instances can be solved within several seconds. Furthermore, as assumptions are relaxed, optimal
solutions are still found within several minutes. Comparison with a sophisticated baseline heuristic reveals that in many
cases the potential reduction in cost from using the method is significant and could be expected to be of the order of at
least 10%. Finally, we present an extension of the MIP model to solve these two problems for a group of airports in a
metropolitan area such as New York (metroplex), where operations at each airport within the metroplex might have an
impact on operations at some of the other airports due to limitations in shared airspace.
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Introduction
The combination of runways that are active at any particular
time at an airport is known as the “runway configuration”
in which the airport operates at that time. The sequence of
configurations selected by controllers greatly influences an
airport’s capacity to serve demand for arrivals and depar-
tures. This paper is concerned with determining a sequence
of runway configurations and the assignment of arrivals and
departures to the active runways that together minimize the
cost incurred at the airport due to delayed aircraft.

Figure 1 shows a schematic representation of Boston’s
Logan International Airport (BOS) with its six runways.
The runway configuration shown in use in the figure con-
sists of three active runways, shown in bold, with the other
three being idle. The direction of operations on each is
indicated. Two of the runways are used for both arrivals
and departures, while the third is used only for departures.
For multi-runway airports, the number of possible configu-
rations can be large. For instance, BOS typically employs
more than 20 different configurations during a year by mak-
ing use of its six runways in different ways.

The availability of certain configurations at most major
airports might be restricted by the weather conditions pre-
vailing at any particular time. For example, a runway
cannot be operated in the presence of strong crosswinds
(relative to the orientation of that runway); or a runway
might not be adequately instrumented for operations under
poor visibility conditions. There are also physical limits
to the capacity of each configuration, i.e., to the number

of arrivals and departures that can be accommodated in a
given length of time while operating in a given configura-
tion. In an operational context, capacity typically is mea-
sured as the expected number of movements that can take
place in the presence of continuous demand. This is also
known as the maximum throughput capacity and is mea-
sured as the number of arrivals and departures per unit of
time, typically 10, 15, or 60 minutes. In making their deci-
sions concerning the best runway configuration to use at
any given time, controllers take into account the capacity
of each available configuration, as well as the scheduled
demand for arrivals and departures, and the weather fore-
cast, which influences the future availability of the different
runway configurations.

In our model, we represent the capacity of different con-
figurations through the runway configuration capacity enve-
lope (RCCE), studied and used in Gilbo (1993, 1997), Hall
(1999), and Gilbo and Howard (2000) and discussed in
depth in de Neufville and Odoni (2003). An RCCE is a
concave piecewise linear function that defines the set of fea-
sible operating points that can be achieved under a given
configuration and under given weather conditions. A run-
way configuration typically will have more than one RCCE,
each corresponding to different weather conditions. Figure 2
shows two typical RCCE that could describe the capac-
ity for arrivals and departures of a runway configuration
like that shown in Figure 1. Note that the horizontal and
vertical axes show, respectively, the number of departures
and arrivals that are demanded or performed during the
selected unit of time, be that 10, 15, or 60 minutes. The
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Figure 1. A runway configuration used at BOS, with
the corresponding active runways shown in
bold.

outermost RCCE shows the capacity available under visual
meteorological conditions (VMC), while the inner one cor-
responds to the same configuration under instrument condi-
tions (IMC), when visibility is limited. Any integral point on
or within the available RCCE corresponds to a feasible oper-
ating point, and any point outside is infeasible. For example,
Point 4 is feasible in VMC but infeasible in IMC. In the lat-
ter case, the configuration does not have sufficient capacity
to accommodate simultaneously the number of arrivals and
departures associated with Point 4 during a single unit of
time, resulting in the queueing of aircraft. The total number
of RCCE that need to be considered, assuming the weather
conditions to be known, is equal to the number of configu-
rations, e.g., about 20 in the case of BOS.

In this paper, we present mixed integer programming
models (MIP) that solve two problems simultaneously.
The first, the runway configuration management (RCM)

Figure 2. Runway configuration capacity envelopes
(RCCE) for a single configuration under
VMC and IMC.
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problem, is to find a schedule of runway configurations that
will best serve the demand over a specified time horizon.
This is the problem we have outlined thus far. Then, given
this schedule of configurations, there remains a degree of
freedom as to the exact balance of arrivals versus departures
to serve during any time interval. Determining the optimal
arrival/departure runway balancing (ADRB) is the second
problem controllers face. Gilbo (1997) proposed an integer
program for the ADRB to minimize queueing by control-
ling the utilization of near-runway airspace and coordinat-
ing operations at arrival and departure fixes subject to a
given schedule of configuration use. Furthermore, Gilbo and
Howard (2000) proposed an integer program to solve the
ADRB problem assuming a constant overall airport RCCE.
As far as we are aware, we present here the first optimiza-
tion approach to the combined RCM and ADRB problems.

In practice, these problems are solved today largely on
the basis of experience. Under this essentially “manual”
approach, the FAA examines the weather forecast and the
expected demand for the next several hours at each major
airport and determines the sequence of runway configu-
rations to be used, including the assignment of arrivals
and departures to runways for each selected configuration.
In doing so, location-specific issues, such as constraints
on runway use imposed by noise or other considerations
(see §4) are also taken into account. The difficult and most
important instances occur when the weather is highly vari-
able or poor (e.g., changing wind directions, occurrence
of IMC). In such cases, the combination of changes in
runway configurations—with attendant partial or full loss
of capacity during changeover times—and of the need to
select among “low” RCCE is likely to result in a significant
backlog of arrivals and/or departures from one time period
to the next. Under such conditions, the situation becomes
highly dynamic, and sequences and assignments might be
modified frequently in response. The models described here
can be most helpful in precisely these cases.

The solution to the RCM and ADRB problems might also
impact air traffic flow management (ATFM) actions that the
FAA and airlines take in the context of the collaborative
decision making (CDM) program. The solution essentially
determines the “airport acceptance rate” (AAR) that ATFM
uses to specify the number of arrivals that can be sched-
uled at each airport in each time period, i.e., the number
of arrival “slots” that will be allocated under CDM among
the airlines using the airport. If the AAR at an airport is
low compared to the forecast demand for arrivals there, a
ground delay program (GDP) can be initiated by ATFM for
that airport, thus delaying before take-off (at their originat-
ing airport) flights headed to that airport. In this sense, the
RCM and ADRB problems have implications not only at
the local level but also at a national one.

In solving these problems, our objective is to mini-
mize the total weighted cost of delays to queued aircraft,
where the weights might take into account the cost of fuel
burn on the airport’s surface (for departures) and in the
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near-airport airspace (for arrivals), as well as other con-
siderations (e.g., controller workload) that might result in
arrival delays being assigned a higher weight than delays
to departures. Note that (i) the changeover times needed
to transition between successive runway configurations and
(ii) the restricted availability of certain configurations at
certain times due to weather conditions are both critical
aspects of the optimization to be performed. The former
precludes the optimality of a greedy policy that simply
operates in the best configuration for the demand in the
current time interval (without taking into account the future
sequence of configurations), while the latter requires that
we consider the “lifespan” of each candidate configuration.

In our models, selecting a configuration is equivalent to
selecting the outermost available RCCE corresponding to
that configuration, this RCCE being determined by current
weather conditions. (We assume that, for a given config-
uration, the IMC RCCE is always fully contained within
the one for VMC.) Selecting the arrival/departure balance
level is then equivalent to selecting an integral point on or
within this RCCE. This selection also affects how delay,
if any, is allocated between arrivals and departures. For
instance, in Figure 2, let Point 1 correspond to the demand
4d11 a15 during hour 1 and assume that the airport oper-
ates in VMC. Because Point 1 lies outside the available
RCCE, some of the demand for the hour in question can-
not be accommodated. In this particular instance, an optimal
choice of operating point, considering only this hour, clearly
lies somewhere on the line connecting Points 2 and 3.

We assume that the break points of each RCCE are
integral so that, along with nonnegativity constraints, the
RCCE defines the convex hull of its feasible operating
points in the two-dimensional departures-arrivals operat-
ing space. These RCCE can be obtained by observing past
operating points and fitting minimal concave piecewise lin-
ear functions which bound these points (see Gilbo 1993
and Kellner and Kösters 2008). Alternatively, computa-
tional models of airport operations can be used to generate
them, as discussed in Swedish (1981), de Neufville and
Odoni (2003), and Stamatopoulos et al. (2004).

Contributions and Outline of Paper

The most important contribution of this paper is the devel-
opment of mixed integer programming models to solve the
RCM and ADRB problems efficiently for a single airport,
as well as the proposed extension of the models to the
metroplex case. In particular:

• In §1, we present a MIP for the single airport problem,
assuming that the changeover time between configurations
is a constant, C, for all pairs of configurations. While this
MIP does not define the convex hull of feasible solutions,
several computational experiments on large realistic data
sets in §1.3 indicate that the formulation is a strong one.
Furthermore, the results of these experiments indicate that
the potential benefit of using this approach is significant
and that improvements of the order of at least 10% could

be expected relative to a sophisticated optimization-based
heuristic.

• In §2, we relax the above assumption to allow the
changeover time between any two configurations to belong
to a set of the form 8iC2 i = 11 0 0 0 1 �9, where C is a con-
stant. Computational experiments show that for � ∈ 82139,
optimal solutions are still obtained within several minutes.

• In §3, we present an extension of the model to opti-
mize over a metroplex of airports.

• In §4, we show that important environmental con-
straints can be easily incorporated into the model.

1. A Mixed Integer Programming Model
for a Single Airport with Constant
Changeover Times

Here we seek to solve the RCM and ADRB problems, out-
lined in the introduction, for a single airport. We assume
that the time required to change between configurations is
a constant, C, and that the relevant data, as listed in the
definitions below, are available and known with certainty.
The latter assumption is reasonable given that we consider
in our model a short time horizon of a few hours. Further-
more, we envisage the method being implemented using a
rolling horizon approach, re-solving every 30 minutes or so
to account for any divergence of observed from expected
data.

T= the set of time intervals, 81121 0 0 0 1 T 9;
Kt = the set of configurations available during time inter-

val t;
Jt

k = the set of linear pieces of the outermost RCCE avail-
able for configuration k at time t;

at = the number of arrivals scheduled for time interval t;
dt = the number of departures scheduled for time

interval t;
ct = the cost of delaying a single arrival for one time inter-

val at time interval t;
qt = the cost of delaying a single departure for one time

interval at time interval t.

In addition, we let the jth piece of the outermost RCCE
available for configuration k at time t, an affine function,
be defined by the parameters �jk > 0, �jk ¶ 0, and �jk ¾ 0.
While these parameters depend on t, because j belongs to
a set that depends on t, we omit this from our notation.

Note that the time horizon is discretized such that the
length of one time interval is equal to the changeover
time C, which is typically of the order of 10 minutes.
In this way, we can model a changeover by allowing no
arrivals or departures to be served during the time interval
at which the changeover occurs. Moreover, the set of time
intervals, T, includes a number of time intervals at the end
of the original time horizon, with no scheduled arrivals or
departures. During these added time intervals, any queues
that have built up can be cleared. We assume that we are
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able to clear all queues without having to cancel or re-route
any flights.

Our decision variables are the following and are defined
for every t only for those configurations k that are
available:

zkt =







11 if we operate in configuration k at time t1

01 otherwise3

ykt =















the number of arrivals served at time t1
if we operate in configuration k at time t1

01 otherwise3

xkt =















the number of departures served at time t1
if we operate in configuration k at time t1

01 otherwise3
ut = the number of arrivals which go unserved at time t;
vt = the number of departures which go unserved at

time t.

The mixed integer optimization problem is as follows:

P12 min
∑

t∈T

4ctut + qtvt5

s/t0 ut − ut−1 +
∑

k∈Kt

ykt = at1 ∀ t ∈T1 (1)

vt − vt−1 +
∑

k∈Kt

xkt = dt1 ∀ t ∈T1 (2)

�jkykt −�jkxkt −�jkzkt ¶ 01

∀ j ∈Jt
k1 ∀k ∈Kt1 ∀ t ∈T1 (3)

∑

k∈Kt

zkt ¶ 11 ∀ t ∈T1 (4)

∑

k′∈Kt−1\8k9

zk′1 t−1 + zkt ¶ 11

∀k ∈Kt1 ∀ t ∈T\8191 (5)

zkt ∈ 801191 ∀k ∈Kt1 ∀ t ∈T1 (6)

ut1 vt ∈�+1 ∀ t ∈T1 (7)

ykt ¾ 01 ∀k ∈Kt1 ∀ t ∈T1 (8)

xkt ¾ 01 ∀k ∈Kt1 ∀ t ∈T1 (9)

u01 v0 = 00 (10)

Our objective is to minimize the total cost of delays
incurred. Constraints (1), (2), (7), and (10) define the vari-
ables ut and vt , the number of arrivals and departures,
respectively, that go unserved at time t. Constraints (3)
force the operating point, given that we operate in the kth
configuration at time t, to lie within its RCCE, while forc-
ing it to zero if zkt = 0. Constraints (4) state that at any
time t, we may operate in at most one configuration.

Constraints (5) invoke our fundamental assumption that
the changeover time is equal to the length of one time inter-
val. In this way, we model the cost of changing from one

configuration to another by enforcing a delay of one time
interval. In other words, it is not possible to operate in con-
figuration k at time t and also in configuration k′ 6= k at
time t − 1.

One could also modify Constraints (5) to consider only
a subset of all pairs of configurations 8k1 k′9, thus model-
ing the changeovers between the excluded pairs as being
instantaneous. This would be suitable if the correspond-
ing changeover times were very small compared to other
changeovers.

Note that we have defined the variables ut and vt to be
integral in Constraints (7). Given our assumptions on the
nature of the RCCE and the integrality of the arrival and
demand data, as well as Constraints (6) on zkt , it follows
that in an optimal solution to the resulting MIP, ykt and xkt
are integral. We therefore relax the integrality constraints
for these two sets of variables and greatly reduce the num-
ber of integer variables in the model.

We can then add two classes of valid inequalities to
strengthen the formulation. First, we add Inequalities (11)
below, which are closely related to Constraints (5). Observe
that in Inequalities (11), we require for all k that we cannot
both operate in configuration k at time t − 1 and also in
some configuration k′ 6= k at time t, while in Constraints
(5), we require for all k that we cannot both operate some
configuration k′ 6= k at time t− 1 and in configuration k at
time t.

zk1 t−1 +
∑

k′∈Kt\8k9

zk′t ¶ 11 ∀k ∈Kt−11 ∀ t ∈T\8190 (11)

It is clear that while the set of feasible integer solutions
remains unchanged under this addition, we remove some
nonintegral solutions from the solution set of the LP relax-
ation of P1.

Now we generate for each time interval t a single
RCCE that defines the convex hull of the set 84x1 y5 ∈�2

+
2

∃k ∈ Kt s.t. �jky − �jkx ¶ �jk1 ∀ j ∈ Jt
k9, i.e., the mini-

mal piecewise linear concave envelope that majorizes all
RCCE at time t. We let this RCCE be defined by the
parameters �′

jt , �
′
jt , and � ′

jt , ∀ j ∈J′
t . Then, observing that

yt
4

=
∑

k∈Kt
ykt and xt

4

=
∑

k∈Kt
xkt represent the number of

arrivals and departures served at time t, respectively, it is
clear that 4xt1 yt5 must lie within this RCCE, and hence
Inequalities (12) below are valid.

� ′

jt

∑

k∈Kt

ykt −�′

jt

∑

k′∈Kt

xk′t ¶ �′

jt1 ∀ j ∈J′

t1 ∀ t ∈T0 (12)

Furthermore, these inequalities give the tightest possible
bound on the relation between feasible yt and xt , because
the convex hull of this (in general, nonconvex) set has been
defined.

1.1. Example Problem

We now present a simple example to test the model and
gain insight into its solution. We consider a time horizon
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Figure 3. Test Problem 1 data, with three configura-
tions and 15 time intervals.

0
0

5

10

S
ch

ed
ul

ed
 a

rr
iv

al
s 

in
 e

ac
h 

tim
e 

pe
rio

d

15

20

1

8

10

2
9

7 3
4

5

6

25

5 10

Scheduled departures in each time period
15 20 25

Notes. RCCE 1 has a solid line, RCCE 2 a dotted line, and RCCE 3 a
dashed line. The scheduled demand is indicated for intervals 1 to 10 and
is zero for intervals 11 to 15.

of 10 periods of demand, set T = 15 to allow time to
serve all demand, and ct = 12, qt = 10, ∀ t ∈ T to capture
the typically greater cost of delaying arrivals compared to
departures. In all examples that follow, we shall use these
cost coefficients. The scheduled demand for arrivals and
departures is displayed in Figure 3 along with the RCCE
corresponding to three configurations, which are available
throughout the entire time horizon.

This problem, along with all others that follow in this
paper, was solved using AMPL CPLEX 11.2.10, using a
single thread, on a computer with an Intel(R) Core(TM) 2
Duo E7400 Processor (2.80 GHz, 3 MB Cache, 1,066 MHz
FSB) and 2 GB of RAM, running Ubuntu Linux. The opti-
mal solution, which is displayed in more detail in Fig-
ures 4, 5, and 6, was found in 0.04 seconds and consists
of operating in configuration 2 for intervals 1 and 2, con-
figuration 3 for intervals 4 to 6, and then in configuration
2 again from interval 8 onward.

Note that the “actual demand” in the system at time t,
given the operating policy in the preceding time intervals,
consists of ut−1 + at arrivals and vt−1 + dt departures, i.e.,
any arrivals (departures) left in queue at the end of time
interval t − 1 plus the scheduled arrivals (departures) in
time interval t. We can then observe the following:

1. In Figure 4, the actual demand and scheduled demand
are identical because the first demand point lies within
RCCE 2, with which we operate, and hence all demand is
served and there is no backlog added to the second time
interval.

2. In Figure 5, because we are changing from configu-
ration 2 to configuration 3, we have x3 = y3 = 0. In this
way, the third actual demand point is added to the fourth
scheduled demand point to create the fourth actual demand
point. Similar behavior is also seen with time intervals 7
and 8 in Figure 6.

Figure 4. Test Problem 1 solution, intervals 1 and 2.
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3. When a change is made, it is made during an inter-
val of relatively low actual demand and before a sequence
that is favored by the new configuration.

4. As time passes, the scheduled and actual demand
could diverge significantly.

In summary, we have learned that even for a very small
problem, it is essential to account for the cumulative nature
of demand and its dependence on our decisions; our early
decisions might have a long-lasting impact on the overall
problem. These interactions might be very complex, and
hence good decision-making will in general be difficult
without the use of sophisticated tools.

1.2. A Baseline Policy

Before performing computational experiments on problems
of realistic size, we now devote our attention to presenting

Figure 5. Test Problem 1 solution, intervals 3 to 6.
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Figure 6. Test Problem 1 solution, intervals 7 to 12.
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a baseline policy in order to obtain a reasonable indica-
tion of the relative quality of the solutions obtained from
P1 compared with, say, current practice. The baseline pol-
icy was designed (i) to obtain an estimate of a lower
bound on the improvement that could be observed in prac-
tice by implementing the policy obtained from solving P1
and (ii) to mimic the approach that might be taken by a
highly skilled controller. The method is developed through
a “smart” heuristic, summarized below first at a high level
and then in detail.

1. Among all configurations that are available for a sig-
nificant period of time starting now, choose the one that is
best (per the criteria described below) to operate in.

2. Operate in this configuration until the first time period
at which it is no longer available for use.

3. When that happens, observe the new state of the sys-
tem: if there is no demand left, then stop; otherwise, return
to Step 1.

The algorithm is essentially a greedy algorithm, modified
to avoid a large number of costly changeovers. We believe
this to be a good approximation of controllers’ actions:
given the difficulty of foreseeing the effect of one’s deci-
sions on future demand, one cannot plan “manually” a good
configuration sequence too far into the future.

To choose which configuration is selected as “best,” we
first restrict our list of eligible configurations to those that
are available for a reasonably long period of time, prevent-
ing too many forced changeovers. We then solve a relevant
optimization problem, P2(t), shown below, over these con-
figurations. P2(t) is an advanced optimization problem and,
as a result, the RCM and ADRB policies that are developed
by the baseline heuristic are sophisticated. We are confident
that, on average, any improvement in objective obtained
through P1 over a policy resulting from the baseline heuris-
tic will represent a lower bound on the improvement that
would be observed in practice by implementing a policy
obtained from P1.

In making such a claim, one cannot ignore the stochastic
environment in which this problem is solved. Recall, how-
ever, that we consider a short time horizon of a few hours,
limiting the uncertainty associated with the data. Moreover,
implementation of our methodology should use a rolling
horizon approach, re-solving the MIP every 15 minutes or
so, to take into account changing conditions while always
looking far enough ahead into the future to avoid simply
relying on a greedy policy.

The following algorithm computes and simulates the
baseline policy.

Algorithm 1
1. Set t 2= 1, and let f 2= 0 be the simulated cost,

ā� 2= a� the actual demand for arrivals and d̄� 2= d� the
actual demand for departures, ∀ � ∈ T. Also let � be the
default number of consecutive time periods for which a
configuration must be available to be considered for selec-
tion. In this paper, we let � = 6, corresponding to one hour.

2. If Kt 6= �, then go to Step 3; else, no demand is
served at this time period, so update the simulated cost
and actual demand by setting f 2= f + ctāt + qtd̄t , āt+1 2=
āt+1 + āt , d̄t+1 2= d̄t+1 + d̄t , and t 2= t + 1. If t ¶ T , then
go to Step 2; else, Stop.

3. Let K̄t =
⋂�−1

h=0 Kt+h be the set of configurations eli-
gible for selection. If K̄t = �, then set � 2= �− 1 and go
to Step 3; else, set � 2= 6 and go to Step 4.

4. Given the state of the system, choose the configura-
tion to operate in by solving the MIP P2(t) if t = 1, or
P2(t + 1) otherwise:

P24t52 min
T
∑

�=t

4c�u� + q�v�5

s/t0 u� +
∑

k∈K̄t

yk� = a�1 ∀ � ∈ 8t1 0 0 0 1 T 91 (13)

v� +
∑

k∈K̄t

xk� = d�1 ∀ � ∈ 8t1 0 0 0 1 T 91 (14)

�jkyk� −�jkxk� −�jkzk� ¶ 01

∀ j ∈Jt
k1 ∀k ∈ K̄t1 ∀ � ∈ 8t1 0 0 0 1 T 91 (15)

zk� − �k ¶ 01 ∀k ∈ K̄t1

∀ � ∈ 8t1 0 0 0 1 T 91 (16)
∑

k∈K̄t

�k ¶ 11 (17)

zk� ∈ 801191 ∀k ∈ K̄t1

∀ � ∈ 8t1 0 0 0 1 T 91 (18)

u�1 v� ∈�+1 ∀ � ∈ 8t1 0 0 0 1 T 91 (19)

yk� ¾ 01 ∀k ∈ K̄t1∀ � ∈ 8t1 0 0 0 1 T 91 (20)

xk� ¾ 01 ∀k ∈ K̄t1∀ � ∈ 8t1 0 0 0 1 T 90 (21)

Note that Constraints (16) and (17) mean that only
one configuration can be chosen for the entire time hori-
zon t1 0 0 0 1 T . Furthermore, only scheduled demand is
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considered for any given time period, i.e., the backlogging
of demand is not taken into account in Constraints (13) and
(14), unlike in the related Constraints (1) and (2) of P1.
The underlying rationale is that working with scheduled
demand, rather than going through the difficult process of
calculating actual demand, more closely resembles the real-
world decision-making approach of controllers (as shown
in the example problem of §1.1, the effect of controllers’
decisions on future demand might be very hard to predict,
hence this is a good way to model their decision process).

Hence P2(t) chooses the single best configuration
according to scheduled demand over the remaining time
horizon. We let k∗ be this configuration, i.e., such that
�∗
k∗ = 1, where È∗ is the optimal vector � of P2(t), and let
t′ = min8�2 � > t1 k∗ yK�9 be the first time at which con-
figuration k∗ becomes unavailable (note that this will be
T + 1 if k∗ is available for the rest of the time horizon).
We will operate in configuration k∗ until time t′ − 1.

5. If t 6= 1, then let � 2= 0, preventing demand from
being served at time t through Inequalities (24) in
P3(k∗1 �1 t1 t′) below; else, let � 2= 1.

6. Now simulate the effect of this choice of k∗ for the
interval 6t1 t′ −17. Solve the following MIP, P3(k∗1 �1 t1 t′):

P34k∗1Ä1 t1 t′52

min
t′−1
∑

�=t

4c�u� + q�v�5

s/t0 u� − u�−1 + y� = ā�1 ∀ � ∈ 8t1 0 0 0 1 t′ − 191 (22)

v� − v�−1 + x� = d̄�1 ∀ � ∈ 8t1 0 0 0 1 t′ − 191 (23)

�jk∗yt −�jk∗xt − �0�jk∗zt ¶ 01 ∀ j ∈Jt
k∗1 (24)

Figure 7. Test Problem 2, with four configurations, 11 RCCE, and 30 time intervals.
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�jk∗yk∗� −�jk∗x� −�jk∗z� ¶ 01

∀ j ∈J�
k∗1 ∀ � ∈ 8t + 11 0 0 0 1 t′ − 191 (25)

z� ∈ 801191 ∀ � ∈ 8t1 0 0 0 1 t′ − 191 (26)

u�1 v� ∈�+1 ∀ � ∈ 8t1 0 0 0 1 t′ − 191 (27)

y� ¾ 01 ∀ � ∈ 8t1 0 0 0 1 t′ − 191 (28)

x� ¾ 01 ∀ � ∈ 8t1 0 0 0 1 t′ − 191 (29)

ut−11 vt−1 = 00 (30)

The above MIP simply fixes the configuration that is
operated over the time interval 6t1 t′ − 17 to be k∗, and
simulates the effect of this decision, forcing zero demand
to be served at time t if �= 0.

7. Update the simulated cost and actual demand by set-
ting f 2= f +

∑t′−1
�=t 4c�u

∗
� + q�v

∗
�5, āt′ 2= āt′ + u∗

t′−1, and
d̄t′ 2= d̄t′ + v∗

t′−1.
8. Set t 2= t′. If t ¶ T , then go to Step 2.
9. Stop. The baseline value is f .

1.3. Computational Results for Larger Problems

Now we introduce several problems of realistic size, shown
in Figures 7, 8, and 9. Note that the set of RCCE in Prob-
lem 4 is a superset of that in Problem 3, which is itself a
superset of that in Problem 2. Each problem has 30 time
intervals, representing 24 10-minute intervals, and 6 inter-
vals at the end with zero demand. Table 1 outlines the
availability of configurations. In addition, when a configu-
ration is available, some of its RCCE might be unavailable,
but these details are omitted for brevity.
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Figure 8. Test Problem 3, with eight configurations, 22 RCCE, and 30 time intervals.
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Table 2 shows that computation times were in all cases
less than three seconds, even for the largest of problems.
Indeed, another indication of the strength of the model,
also shown in the table, is the small difference between the
optimal objective value of P1, Z∗

IP and the optimal value of
the LP relaxation of P1, Z∗

LP .
We now compare the policies and objective values

obtained from P1 to those of the baseline heuristic. The
results are presented in Tables 4 and 5. Note that we have

Figure 9. Test Problem 4, with 12 configurations, 33 RCCE, and 30 time intervals.
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introduced further examples 5–7, with 9, 8, and 9 config-
urations, respectively, whose detailed description we omit
for brevity. We do, however, describe the availability of
these RCCE in Table 3.

It can be observed that in many cases our model far out-
performs the baseline approach, by margins of 10%–50%.
This can be explained by the cumulative nature of the
demand in the system, which amplifies the negative effect
of any suboptimal decisions made early in the time horizon.
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Table 1. Availability of configurations for Prob-
lems 2–4.

Problem Configurations that are unavailable

2 1 at t = 20; 2 on 6191217; 3 on 861121259;
4 on 85161121131259

3 1 and 5 on 6161177; 2 and 6 on 6151177;
3 and 7 on 841279; 4 and 8 on 84151279

4 1, 5, 9, and 11 on 6161177; 2 and 6 on 6151177;
3 and 7 on 841279; 4, 8, and 12 on 84151279;
10 on 841151279

However, we also note that in one instance where the poli-
cies are similar the improvement is only 2%.

A small difference could also be expected when all con-
figurations are available at all time periods, because in this
case the baseline heuristic would produce a policy that uses
a single configuration, and P1 would also be likely to do the
same despite its slight difference from P2(1). However, in
this case the heuristic almost becomes a complete optimiza-
tion. Furthermore, this case is an uninteresting one because
in practice many configurations often cannot be operated
for prolonged periods of time. This problem becomes most
interesting when some configurations become unavailable
and we must determine whether to choose the one that
is best now, even though it will become unavailable at a
later point, or to choose some other configuration that will
remain available for a longer period of time. In any case, it
is clear that the potential benefit from the implementation
of this method could be significant. Overall, we expect to
see an average improvement of the order of at least 10% in
practice, given the results presented here, and the advanced
nature of our baseline heuristic, which involves solving a
relevant optimization problem.

2. Multiple Changeover Times
We now extend the model to allow different changeover
times belonging to a finite set of the form 8iC2 i =

11 0 0 0 1 �9. We must first discretize the time horizon further,
such that the length of one time interval is equal to the
minimum changeover time C. For a given problem solved
by P1, this will increase the number of time intervals in
the time horizon and scale down the RCCE, both by a fac-
tor of �. Note that the new RCCE will then not necessar-
ily define the convex hull of the feasible operating points,
hence all such RCCE must be rounded so that they do

Table 2. Computation times for P1 and a measure of
the strength of the formulation.

Computation % difference between
Problem time (s) Z∗

IP Z∗
LP Z∗

IP and Z∗
LP

2 0.1 6,148 5,681.4 706
3 1.1 4,752 3,376.4 2809
4 2.6 3,330 2,788.7 1602

Table 3. Availability of configurations for prob-
lems 5–7.

Problem Configurations that are unavailable

5 1 at 10, 17, and 18; 2 at 21; 5 at 11, 20, and 21;
6 on 6101127, at 20 and 21; 9 at 21

6 3, 4, 5, 6, 7, and 8 on 6101117; 1, 2, 3, 4, 5, and 6
on 6201217

7 2, 3, and 4 on 6131147; 6, 7, and 8 at 25

indeed satisfy this requirement. However, we cannot make
the discretization too fine because the rounding error of
these RCCE would then become significant.

To model changeover times for cases in which one time
interval now becomes two, we let K′ = 84k11 k251 4k31 k451
0 0 0 1 4km−11 km59 be the set of ordered pairs represent-
ing changeovers that take two time intervals, where ki ∈
⋃

t∈TKt , ∀ i ∈ 811 0 0 0 1m9. We then add the following con-
straints, of which there are at most m4T − 25/2, to the
model

zk1 t−2 +
∑

k′ 2 4k1 k′5∈K′

zk′t ¶ 11

∀k s.t. ∃4k1 k′5 ∈K′1 ∀ t ∈T\811290 (31)

For three changeover times, which for all practical pur-
poses is the most that would be necessary, we first triple
the number of time intervals in the time horizon and then
add the constraints for those changeovers that take two time
intervals, exactly as in (31) above. In addition, we let K′′ =

84k11 k251 4k31 k451 0 0 0 1 4kn−11 kn59 be the set of ordered pairs
representing changeovers that take three time intervals. We
then add the following constraints to the model:

zk1 t−3 +
∑

k′ 2 4k1 k′5∈K′′

zk′t ¶ 11

∀k s.t. ∃4k1 k′5 ∈K′′1 ∀ t ∈T\81121390 (32)

Finally, we can again add valid inequalities in the spirit
of Inequalities (11), corresponding to both Constraints (31)
and (32).

2.1. Size of the Model

We now present in Table 6 the effect of allowing multiple
changeover times on the size of the model. To simplify,

Table 4. Comparison of solutions from the model P1
with baseline solutions.

P1 solution Baseline
Problem value solution value % difference

2 61148 61964 1303
3 41752 71180 5101
4 31330 31396 200
5 81462 121510 4708
6 81826 101504 1900
7 101078 111638 1505
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Table 5. Comparison of the optimal policies and the baseline policies.

Problem P1 policy Baseline policy

2 1 on 611177; 4 on 6191247; 3 on 6261307 1 on 611197; 1 on 6211307
3 1 on 61157; 4 on 671267 6 on 611147; 4 on 6161267; 4 on 6281307
4 11 on 611157; 10 on 6171267 11 on 611157; 4 on 6171267
5 9 on 611197; 1 on 6211307 1 on 61197; 1 on 6111167; 4 on 6181307
6 2 on 611197; 8 on 6211307 8 on 61197; 2 on 6111197; 7 on 6211307
7 2 on 611127; 6 on 6141237; 5 on 6251307 3 on 611127; 8 on 6141247; 8 on 6261307

Table 6. Effect of the number of changeover times on the size of the model.

Integer Continuous Upper bound on
Changeover times variables variables number of constraints

1 T 42 +K5 (420) 2KT (720) T 43 + J + JK + 4K5 (2,700)
2 2T 42 +K5 (840) 4KT (1,440) 2T 43 + J + JK + 4K + 2K25 (22,700)
3 3T 42 +K5 (1,260) 6KT (2,160) 3T 43 + J + JK + 4K + 4K25 (60,000)

Notes. T is the length of the time horizon under a single changeover time. Figures in parentheses correspond approx-
imately to the largest problem considered in §1.3, with J = 3, K = 12, T = 30. Valid inequalities are included in these
counts.

we assume that ∀k ∈ Kt , ∀ t ∈ T, we have �Kt� = K and
�Jt

k� = �J′
t� = J .

Note that in the worst case, allowing for three
changeover times increases the number of constraints by a
factor of 20, but the model is still not excessively large.
This case occurs when there is a single changeover that is
about a third of the length of all others.

2.2. Computational Results

In the interest of estimating computation times for the
case of multiple changeover times, as well as gaining
some insight into the effect of this modeling adjustment
on optimal solutions, we next modify the three problems
from §1.3. We first consider the case of two changeover
times, allowing the changeovers between two configura-
tions to take half the time of all other changeovers. These
shorter changeovers are indicated in Table 7, along with the
corresponding optimal policies and computation times.

From Table 7, it can be seen that computation times
increased by an order of magnitude over those of Table 2
in §1.3 but were still very short. Furthermore, different opti-
mal policies are obtained that favor the shorter changeovers,
compared to those of Table 5 in §1.3. In particular, the opti-
mal configuration sequence for Problem 2 changes from
4114135 to 4113115, while that for Problem 3 changes
from 41145 to 42135, and that for Problem 4 from 4111105

Table 7. Policies and computation times for two
changeover times.

Short
Problem changeovers Optimal policy Time (s)

2′ 81139 1 on 611357, 3 on 6371487, 005
1 on 6501567

3′ 82139 2 on 61177, 3 on 691517 2402
4′ 841119 11 on 611187, 4 on 6201507 409

to 411145, each clearly taking advantage of the shorter
changeover times, as might be expected.

Next we modify the problems from §1.3 in a similar way
to allow for three different changeover times. The modifi-
cations and results are shown in Table 8. Again, the opti-
mal policies change due to the different changeover times
between certain configurations. For example, comparing
with Table 7, the optimal configuration sequence for Prob-
lem 2 changes from 4113115 to 4113125, given the short
changeover between configurations 2 and 3. Furthermore,
the long changeover between configurations 1 and 4 rules
out the optimal solution 4114135 to the original problem,
shown in Table 5, §1.3.

While it is clear that computation times are significantly
longer than in the case of one or two changeover times,
these results indicate that optimal solutions are obtained
quickly enough to warrant successful implementation in
practice, even for the largest problems.

3. Optimizing Over a Metroplex of
Airports

We now extend the problem to consider multiple airports
operating within close proximity of one another. This is

Table 8. Policies and computation times for three dif-
ferent changeover times.

Problem Short Long Optimal policy Time (s)

2′′ 82139 81149 1 on 611527, 3 on 6551727, 204
2 on 6741847

3′′ 83149 81149 2 on 611167, 4 on 6191777 12201
4′′ 841109 8101119 11 on 611277, 4 on 6301767 4400

Notes. The “Short” column indicates configuration pairs requiring a
single time interval for a changeover, whereas the pairs in the “Long”
column require three time intervals.
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often referred to as a metroplex of airports. In this case
it is not sufficient, in general, to optimize each airport
separately, because one might end up with an infeasible
solution for the system as a whole due to the interactions
between arrivals and departures at the different airports.
This relationship has been studied recently in Bonnefoy and
Hansman (2005) and Bonnefoy (2008). In particular, the
capacity of a metroplex as a system will in general be lower
than the sum of the capacities of its individual airports.

Furthermore, the use of a given configuration at one air-
port will often impact the range of configurations that can
be used simultaneously at neighboring airports within the
metroplex. Consider, for example, the New York metro-
plex consisting of the airports of Newark (EWR), Kennedy
(JFK), LaGuardia (LGA), Islip (ISP), and Teterboro (TEB).
One of the many instances of the interactions mentioned
above is that when JFK operates with landings on Runway
13L in IMC, LGA must also use its Runway 13 for landings
and must also coordinate departures on either its Runway 4
or its Runway 13 with JFK (New York ARTCC 2008).

3.1. Multiple Airport Mixed Integer
Programming Model

In extending the mixed integer programming model to this
case, an extra index is added to each variable, correspond-
ing to the relevant airport p ∈ P, and the constraints and
definitions of sets and parameters are modified accordingly.
In addition, we return to the original assumption of constant
changeover times across all airports. The resulting mixed
integer program is presented below and can be viewed as a
larger version of the single airport case, with several cou-
pling constraints added.

P42 min
∑

p∈P

∑

t∈T

4cptupt + qptvpt5

s/t0 upt − up1 t−1 +
∑

k∈Kpt

ypkt = apt1

∀p ∈P1 ∀ t ∈T1 (33)

vpt − vp1 t−1 +
∑

k∈Kpt

xpkt = dpt1

∀p ∈P1 ∀ t ∈T1 (34)

�pjkypkt −�pjkxpkt −�pjkzpkt ¶ 01

∀p ∈P1 ∀ j ∈Jt
pk1 ∀k ∈Kpt1 ∀ t ∈T1 (35)

� ′

pjt

∑

k∈Kpt

ypkt −�′

pjt

∑

k′∈Kpt

xpk′t ¶ �′

pjt1

∀p ∈P1 ∀ j ∈J′

pt1 ∀ t ∈T1 (36)
∑

k∈Kpt

zpkt ¶ 11 ∀p ∈P1 ∀ t ∈T1 (37)

zpkt +
∑

k′∈Kpt−1\8k9

zpk′1 t−1 ¶ 11

∀p ∈P1 ∀k ∈Kpt1 ∀ t ∈T\8191 (38)

zpk1 t−1 +
∑

k′∈Kpt\8k9

zpk′t ¶ 11

∀p ∈P1 ∀k ∈Kpt−11 ∀ t ∈T\8191 (39)

zpkt + zp′k′t ¶ 11 ∀p ∈P1 ∀k ∈Kpt1

∀ 8p′1 k′9 ∈Npk1 ∀ t ∈T1 (40)

�̄ i
j

∑

p∈P

∑

k∈Kpt

ypkt − �̄i
j

∑

p′∈P

∑

k′∈Kp′ t

xp′k′t ¶ �̄i
j1

∀ i ∈I1 ∀ j ∈ J̄i1 ∀ t ∈T1 (41)

zpkt ∈ 801191 ∀p ∈P1

∀k ∈Kpt1 ∀ t ∈T1 (42)

upt1 vpt ∈�+1 ∀p ∈P1 ∀ t ∈T1 (43)

ypkt ¾ 01 ∀p ∈P1 ∀k ∈Kpt1 ∀ t ∈T1 (44)

xpkt ¾ 01 ∀p ∈P1 ∀k ∈Kpt1 ∀ t ∈T1 (45)

up01 vp0 = 01 ∀p ∈P0 (46)

Addressing first the similarities of P4 with P1, our objec-
tive is again to minimize the total cost of delays incurred,
where upt and vpt are the number of arrivals and departures,
respectively, that go unserved at airport p at time t. These
variables are defined by Constraints (33), (34), (43), and
(46). Constraints (35) force the operating point, 4xpkt1 ypkt5,
given that we operate in the 4p1 k5th RCCE at time t, to
lie within this RCCE, while forcing it to zero if zpkt = 0,
in which case we do not operate in RCCE 4p1 k5 at time t.
Constraints (37) state that, at any time t, we may operate
in at most one configuration at each airport, while Con-
straints (38) model the cost of changing from one config-
uration to another at each airport by enforcing a delay of
one time interval. Finally, for a fixed airport p, Inequalities
(36) are identical to Inequalities (12), which were added to
P1; and similarly, Inequalities (39) are the same as Inequal-
ities (11), overlooking the notational difference of an extra
p in the subscripts.

In addition to these constraints, which are in essence
the same in P4 as in P1, we model the interdependence
between airports in Constraints (40) and (41) as follows.
Letting Npk = 88p′

11 k
′
191 8p

′
21 k

′
291 0 0 09 be the set of pairs

such that we cannot operate in configuration k at airport p
while also operating in configuration k′ at airport p′, for any
8p′1 k′9 ∈Npk, Constraints (40) state that we cannot operate
in configurations at different airports that are incompatible.
In Constraints (41), we assume that for each index i in
some set I, we have a system-wide capacity envelope in
effect at every time interval that models the extra depen-
dence between airports, and let �̄i

j , �̄
i
j , and �̄ i

j be the param-
eters of the jth piece of the ith capacity envelope, where
j ∈ J̄i. Indeed, the dependence might be much deeper
than this, ideally requiring capacity envelopes for every
combination of airports and configurations. However, such
envelopes might be difficult to obtain, requiring sophisti-
cated computational modeling of the system, whereas the
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system-wide envelopes above might be obtained through
observed system data.

3.2. Computational Results

We show here a large example with 5 airports, which have,
respectively, 10, 8, 4, 4, and 4 configurations and 26, 20,
11, 10, and 12 RCCE, giving a total of 30 configurations
and 79 RCCE. Problem characteristics are varied, and com-
putational results are presented in Tables 9 and 10.

In Table 9, when system-wide capacity envelopes, Con-
straints (41), are omitted, one can observe that the solution
times are highly variable, depending on the characteristics
of the problem. In varying the characteristics, we start by
solving the full problem (i.e., with all configurations and
RCCE available and all combinations allowed) and then
modify the problem so that the optimal solution becomes
infeasible. Proceeding in this manner, one can see that dis-
allowing certain combinations of configurations being used
between airports reduces computation time, while remov-
ing the availability of certain RCCE and configurations at
certain times can greatly increase computation time.

These trends make sense because disallowing combina-
tions of configurations between airports reduces problem
size, while progressively removing optimal solutions by
changing the problem data is likely to result in an opti-
mal solution that is more difficult to obtain by branch and
bound. Note as well that each of the first three rows of
Table 9 closely corresponds to solving five single airport
problems, because there is no coupling between the five
airports in these instances. This gives further evidence that
the models we have presented to solve the single airport
problem are tractable.

Table 10 shows computational results once a system-
wide RCCE, Constraint (41), has been added. First, one
should note that no optimal solutions were obtained within
five minutes, and hence we present the bounds obtained.
This is clearly a significantly worsened performance, com-
pared to the single-airport case. However, it is encour-
aging that good feasible solutions were always obtained

Table 9. Effect of problem characteristics on compu-
tation time for the metroplex case with no
system-wide RCCE.

Some Optimal
Configurations RCCE 88p1k91 8p′1 k′99 objective
unavailable† unavailable disallowed‡ value Time (s)

No No No 281422 206
Yes No No 351120 2305
Yes Yes No 361424 7906
No No Yes 281422 103
Yes No Yes 351120 2703
Yes Yes Yes 361862 3003

†41141135, 41191205, 42121135, 42141205, 43131135, 4412155,
4412165.

‡8811991 821399, 8821391 841499, 8831291 851499.

.

Table 10. Effect of problem characteristics on the
bounds on the optimal objective value
obtained within five minutes for the metro-
plex case with a system-wide RCCE.

Some 88p1k91 Bounds on
Configurations RCCE 8p′1 k′99 optimal Optimality
unavailable† unavailable disallowed‡ objective value gap (%)

No No No 483139718319045 006
Yes No No 483139718517445 207
Yes Yes No 483139718413425 101
No No Yes 483139718318965 006
Yes No Yes 483139718512065 201
Yes Yes Yes 483139718412205 100

†41141135, 41191205, 42121135, 42141205, 43131135, 4412155, 4412165.
‡8811991 821399, 8821391 841499, 8831291 851499.

within one minute and that the best solutions obtained after
five minutes typically were within about 2% of optimality.
In addition, observe that in this example the system-wide
RCCE is quite restrictive given the increase in the opti-
mal objective values that can be inferred from comparing
Tables 9 and 10.

It is evident that the addition of a system-wide RCCE
has a significant effect on computation time, and that as a
result the metroplex formulation is less effective than the
single airport formulation. Nevertheless, good solutions are
obtained within a practical amount of time.

4. Further Extensions
We consider next extensions to the basic model that address
issues occasionally arising in practice. Suppose that there
are certain environmental constraints on certain configura-
tions, such as federal or local regulations (or, in many cases,
local “letters of understanding”) governing airport opera-
tions. For example, the use of a configuration that leads
to departures taking off over a residential area might be
prohibited or discouraged during certain times of the day.
We show here that the model can be easily extended to
accommodate such restrictions.

Consider, for example, the following cases for the single
airport problem:

1. The maximum total operating time in configuration k
is S1 time intervals in any continuous period of length
S2 >S1. We add the following T + 1 − S2 constraints:

∑

t∈Q

zkt ¶ S11 ∀ t′ ∈ 81121 0 0 0 1 T + 1 − S291

where Q= 8t′1 t′ + 11 0 0 0 1 t′ + S2 − 19⊂T0 (47)

2. Once we operate in configuration k, and then stop, we
may not resume operation in this configuration until it has
been inoperative for S time intervals. Assuming that there
are at least S time intervals remaining after some time t,
we want zkt = 11 zk1 t+1 = 0 ⇒ zk1 t+21 zk1 t+31 0 0 0 1 zk1 t+S = 0.
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We add 2T − 4 variables, wt and �t , and the following
3T − 6 + 4T − S54S − 15+ 4S − 254S − 15/2 constraints to
our model:

wt ¾ 01 ∀ t ∈ 81121 0 0 0 1 T − 291 (48)

wt ¾ zkt − zk1 t+11 ∀ t ∈ 81121 0 0 0 1 T − 291 (49)

�t ¾ zk1 t+j+11 ∀ t ∈ 81121 0 0 0 1 T − 291 ∀ j ∈ 81121 0 0 0 1 s′91

where s′
= min8S − 11 T − t − 191 (50)

�t +wt ¶ 11 ∀ t ∈ 81121 0 0 0 1 T − 290 (51)

Note from Constraints (49) that wt ¾ 1 if we operate in
the kth configuration at time t but not at time t + 1, and
from Constraints (50) that �t ¾ 1 if we operate in configu-
ration k in any of the s′ time intervals after interval t + 1.
Constraints (51) then state that at most one of these events
can occur.

Given that such extensions would normally complicate
the decision-making process significantly, the ease with
which the MIP models can incorporate them is an impor-
tant benefit.

5. Conclusions
We have presented a strong mixed integer programming
formulation to solve the single airport RCM and ADRB
problems. Evidence provided in the form of computa-
tional results on realistic problem data indicates that our
model is capable of solving real-world instances to opti-
mality quickly enough to be implemented. To obtain a
lower bound on the expected benefits from our optimiza-
tion approach, a sophisticated optimization-based heuristic
was developed that reveals the potential cost savings to be
indeed significant. It was also shown that a number of addi-
tional potential constraints and local considerations can be
incorporated into the models with little difficulty. Finally,
we have also proposed an extension of the model to opti-
mize over a metroplex of airports. Although the results
reported herein are encouraging, this is a topic that lends
itself to much future work.

We have now started, in association with the MIT
Lincoln Laboratory, a process that might eventually lead
to field implementation of our approach. As a first step,
the optimization models would be operated “offline” for

one or more selected airports and their recommendations,
and attendant delays would be compared with the actual
sequences selected by the FAA and the observed delays
to arrivals and departures. If successful, we envisage that
in the long run the approach will be implemented using
a rolling horizon, with the solution being updated at rela-
tively short intervals (e.g., every 30 minutes) to compensate
for the uncertainty in some of the data.
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